Typer matriser - Hva er det, definisjon og konsept

Å definere de grunnleggende typene matriser er viktig for å kunne bygge andre typer og mye mer komplekse metoder.

Basen er viktig. Og når vi snakker om base, refererer vi ikke til noe matematisk konsept. Vi viser til kunnskapsgrunnlaget. Matriser er et av de viktigste og mest brukte begrepene innen forskjellige vitenskapsfelt.

I økonometri, i dataprogrammering, i big data og på forskjellige felt der det er snakk om å krysse data eller jobbe med en stor mengde data.

Firkantet matrise

En kvadratmatrise tilfredsstiller det (m = n). Med andre ord har den samme antall rader og kolonner. Så dimensjonen til radene vil være den samme som dimensjonen til kolonnene.

Den firkantede matrisen er veldig viktig fordi den er grunnlaget for mange matrisetyper og metoder.

Eksempel

Matrisedimensjon B = 2 x 2.

Transponert matrise

En transponert matrise består av å omorganisere den opprinnelige matrisen ved å endre radene etter kolonner og kolonnene etter rad.

Generelt er en transponert matrise angitt med et overskrift T eller en apostrof ('). For å uttrykke det bedre valgte vi overskrift T.

Etter det forrige eksemplet ville det være: BT.

Eksempel

Når den opprinnelige matrisen er en kvadratmatrise, som i vårt tilfelle, forblir dimensjonen til matrisen den samme fordi antall rader og kolonner er det samme.

Matrisedimensjon BT = 2 x2.

Identitetsmatrise

Identitetsmatrisen er en firkantet matrise der alle elementene er nuller bortsett fra de som tilhører hoveddiagonalen. Det er vanligvis identifisert med brevet Jeg.

Identitetsmatrisen kan raskt skilles ut uten å gjøre noen beregninger.

Vi har tildelt en 3 × 3 dimensjon i dette tilfellet. Imidlertid kan denne dimensjonen være større eller mindre. Vi må bare overholde når matrisen fortsatt er firkantet og oppfyller karakteristikken: alle nuller unntatt hoveddiagonalen som må ha en.

Eksempel

Identitetsmatrisen fungerer som nummer 1 i vanlig algebra. Være Jeg identitetsmatrisen og B hvilken som helst matrise, har produktet av begge en nøytral effekt på matrisen B. Så matrisen B er det samme som IB.

Trekantet matrise

En trekantet matrise er en firkantet matrise der elementene under hoveddiagonalen er nuller eller elementene over hoveddiagonalen er null.

Den trekantede matrisen fokuserer på plasseringen av trekanter inneholder bare nuller. Avhengig av posisjonen i forhold til hoveddiagonalen, vil den trekantede matrisen kalles øvre eller nedre.

Øvre triangulær matrise:

Nedre trekantet matrise (nedre):

Den trekantede matrisen deltar i Nedre-Øvre (LU) dekomponeringsmetoden, som brukes til å oppnå Kolesky nedbrytning. Denne metoden er mye brukt i kvantitativ økonomi for å transformere uavhengige normale variabler til korrelerte normale variabler.

Symmetrisk matrise

En matrise er symmetrisk hvis den er en kvadratmatrise og sammenfaller med dens transponering (C = CT).

For å finne symmetriske matriser på en enkel måte, må vi bare se på elementtrianglene som er over og under hoveddiagonalen.

Eksempel

Populære Innlegg

Hvor mye betaler du for kredittkortene dine?

Det er for tiden et enormt utvalg av kredittkorttilbud. Mange husholdninger, for en eller annen ting, har vanskelig for å få endene til å møtes og bruker denne typen kort for å gjøre disse utgif.webptene før de samler inn lønnen. Mange husholdninger bruker kredittkort. Ikke bare Les mer…

5 trinn for å velge det ideelle lommebokkortet for dine behov

Å foreta betalinger sikkert er viktig og mer med boom i online shopping. Hvor mange ganger har du ønsket å kjøpe noe, men ikke våget å gi kortet der du har alle besparelsene dine? Et veskekort lar deg kjøpe uten å måtte ha mye penger på det, det er enkelt og effektivt. En betalingLes mer…

Hvilke verktøy for risikostyring har easyMarkets?

Risikostyring er veldig viktig i handel. Det er faktisk innenfor de tre grunnleggende søylene sammen med psykologi og analyse. På denne linjen tilbyr easyMarkets-megleren sine kunder ulike risikostyringsverktøy. Etter de store fallene av posene forårsaket av COVID-19 mange Les mer…