Endelige sett - Hva er det, definisjon og konsept

Endelige sett er de hvis kardinalitet, eller antall elementer i den, er lik et naturlig tall.

Et endelig sett, med andre ord, er et som har en rekke elementer som kan telles. Å være det motsatte av et uendelig sett, der elementene er utallige.

En mer formell måte å uttrykke at et sett er endelig er at elementene i det settet, som vi vil kalle M, kan pares med elementene i settet (1, 2,…, n), som vi vil kalle N. Dette er en sekvens av heltall der hvert element er lik det forrige, pluss enheten.

Dermed kan elementene i M og N parres en etter en (som er kjent som en-til-en-korrespondanse), uten å utelate noe element i de to settene.

Det sies også at M og N er ekvipotente, det vil si at for hvert element av M er det et element av N.

Videre sammenfaller tallet n (det største elementet i settet N) med antall elementer i M, der n er kardinalen, kardinaliteten eller kraften til N, og dens notasjon er kortet (N), | N | eller #N.

Endelige eksempler

Noen eksempler på endelige sett vil være følgende:

  • Ulige heltall større enn 13 og mindre enn 29: (15, 17, 19, 21, 23, 25, 27)
  • Jordens hav: Atlanterhavet, Stillehavet, Indisk, Arktis, Antarktis
  • Listen over de tjue studentene som tilhører et klasserom.

Egenskaper til endelige sett

Blant de viktigste egenskapene til endelige sett er de som er utsatt nedenfor:

  • Foreningen av to eller flere endelige sett resulterer i et endelig sett.
  • Skjæringspunktet (elementene til felles) til et endelig sett med ett eller flere sett er endelig.
  • Delmengden av et endelig sett er også endelig.
  • Delsettet C av et endelig mengde M er preget av å ha et mindre antall elementer enn M. Det vil si at: Hvis C ⊊ M og | M | = n, deretter | C | <n (symbolet ⊊ betyr at C er en riktig delmengde av M. Det vil si at alle elementene i C er inneholdt i M, men det er minst ett element i M som ikke er i C).
  • Kraftsettet til et endelig sett M, som inkluderer alle delmengder som kan dannes med elementene i settet M (inkludert det tomme settet eller ∅), er endelig og har 2n elementer, hvor n er antall elementer i M. For eksempel hvis vi har:

(1, 3, 41)

Kraftsettet ville være: (∅, (1,3), (1,41), (3,41), (1), (3), (41), (1,3,41))

Som vi kan se, har maktsettet til et endelig sett med tre elementer åtte (23) elementer.

Populære Innlegg

Daniel Lacalle gir oss sin visjon om brexit, olje og den spanske økonomien

Vi møter en av øyeblikkets mest innflytelsesrike økonomer. Daniel Lacalle forteller oss om ulike økonomiske faktorer som påvirker verden. Siden konsekvensene av Brexit, sysselsetting i Spania, investeringsfondens verden og oljemarkedet. Daniel Lacalle, en av de 20 mest innflytelsesrike økonomene i verdenLes mer…

Latinamerikanere reduserer sitt forbruk i USA på grunn av Trumps politikk

Latinamerikanske borgere reduserte spesielt forbruket i USA på grunn av Donald Trumps undertrykkende innvandringspolitikk. Deres frykt for å bli grepet inn av det amerikanske politiet har fått dem til å begynne å spare penger for å betale juridiske og juridiske utgif.webpter i tilfelle de blir tiltalt. Som vi har kunnet observere i dem alle Les mer…

Amerikas største tekniske selskaper

Nok et år ser det ut til at Apple fortsatt ikke har en verdig rival om å ta bort førsteplassen i rangeringen av de største teknologiselskapene i USA. Med en markedsverdi på 686,97 og 313,97 milliarder euro, er den plassert i topp 1, etterfulgt av Alphabet (hvis mest kjente datterselskapLes mer…